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Abstract - An effective method for joint timing and channel
estimation for receive diversity systems in a frequency-flat
Rayleigh fading environment is presented. We implement
non-synchronous timing recovery using Gardner’s timing
error detector, whose insensitivity to phase errors allows
for timing recovery prior to pilot symbol based channel
estimation. By employing a polyphase filter bank in the
timing loop, we are able to simultaneously carry out matched
filtering and data interpolation, thus eliminating the need for
a separate interpolation filter. In addition, selection diversity
combining is used to select the input to the timing loop, thus
improving the reliability of the signal used for timing recov-
ery. Pilot assisted channel estimation is performed on the
recovered data strobes. For normalized Doppler frequency of
0.01 the system’s bit error rate (BER) performance is within
1 dB from the ideal timing and channel estimation error
bound, with an additional drop of1.5 dB for a non-optimum
channel interpolator. In deep fades, the receiver timing is
held fixed. We show that the receiver maintains timing lock
over such fades up to a normalized timing bandwidth of
1× 10−4 for normalized Doppler frequency up to0.05.

Keywords - synchronization, timing recovery, channel
estimation, diversity, interpolation

I. I NTRODUCTION

Rapid fading, which characterizes mobile communication
channels, is detrimental to the system performance as it
introduces an irreducible bit error rate (BER) floor. As a
result, a considerable amount of effort has been invested in
designing methods to reduce the effects of fading. Antenna
diversity has proved an effective technique in improving the
performance of wireless systems in fading environments. A
fundamental problem in the design of diversity systems is
the estimation of a number of reference parameters for the
receiver, including the timing epoch, carrier frequency and
the fading channel state information (CSI).

Timing recovery is of paramount importance in the op-
eration of all digital receivers since it impacts the ability
to provide the decision device with signal samples with
minimum amount of intersymbol interference (ISI). In ad-
dition, accurate data strobes are required for pilot symbol
channel estimation. Two major categories of timing recovery
schemes exist [1], depending whether or not the sampling is

synchronized to the symbol rate. In the case of synchro-
nized sampling, the error signal generated by the timing
error detector (TED) is used to adjust the timing phase of
a numerically controlled oscillator (NCO), which in turn
provides the strobe timing. Current trends tend to prefer fully
digital implementations, where timing is not synchronized
to the symbol rate. In such situations, the incoming signal
is sampled (usually at a rate higher than the symbol rate)
by a locally generated clock. The data strobes for detection
are obtained by interpolating the non-synchronized samples
depending on the value of a TED output. This is referred to
as non-synchronous timing recovery.

A vast range of literature has been devoted to timing error
detection and interpolation. The former has resulted in a
number of practical TED’s, such as those presented in [2],
[3] and [4]. An attractive feature of Gardner’s Zero Crossing
Detector (ZCD) [3] is its immunity to phase shifts. While
it has been documented that it exhibits a significant amount
of self noise for small excess bandwidth values, this effect
has been greatly mitigated by pre-filtering of data signal [5].
Timing correction via interpolation has also generated a lot
of literature. An excellent tutorial is presented by [6] and
[7]. Recently, Harris [8] analyzed the use of polyphase filter
banks to combine the functions of match filtering and data
interpolation, thus eliminating the need for separate filters.

In the field of channel estimation, a commonly used
method for estimating the time varying channel gain and
phase is Pilot Symbol Assisted Modulation (PSAM), de-
veloped by Sampeiet al. [9] and Moheret al. [10]. In a
PSAM-based system, known training symbols are periodi-
cally inserted into the data stream prior to pulse shaping. The
receiver then interpolates these pilot symbols to derive the
channel state information. Performance analysis of PSAM
has been presented by Cavers in [11].

A recent example of a diversity receiver design suitable
for mobile communications is the work contained in [12].
The receiver incorporates a number of parameter estimation
methods. Specifically, Pilot Symbols Assisted Modulation
is employed to estimate the channel state, while optimum
timing information is obtained by searching for a maximum
of a Likelihood Function. In this paper we present a less
complex, structured approach where timing recovery pre-
cedes channel estimation and data detection. We concentrate
on joint estimation of the timing epoch and the channel state



for diversity receivers. We consider frequency-flat Rayleigh
fading, which is assumed to be independent on each diversity
branch. By implementing timing estimation using a bank of
polyphase matched filters, we are able to reduce the sampling
rate at the receiver while maintaining the required resolution
for timing recovery. Channel state information is estimated
independently on each branch via a PSAM-based method. To
compensate for deep fades in the tracking loop, we freeze
the timing in the event of low signal strength. We examine
the BER performance as well as the stability of the receiver
for a range of timing bandwidths and Doppler frequencies.

The remainder of the paper is organized as follows.
We begin by outlining the system under consideration in
Section II, including a discussion of timing recovery using a
bank of polyphase matched filters and PSAM-based channel
estimation. Section III presents simulation results of the
receiver’s BER performance as well as the stability range
for increasing timing bandwidths and Doppler frequency.
Finally, Section IV presents some concluding remarks.

II. SYSTEM OVERVIEW

In this section we describe the architecture of the com-
munication system examined. We consider a Nyquist pulse-
shaped system with receive diversity of orderNr operating
in a frequency-flat Rayleigh fading environment.

A. Transmitted Signal Model

The complex envelope of the transmitter output signal is
given by

s(t) =
∞∑

k=−∞

ckp(t− kT ) (1)

where T is the symbol duration,ck denotes the symbol
value at timekT , and p(t) is the impulse response of the
pulse shaping filter. In this paper, we limit the discussion to
Binary Phase Shift Keying (BPSK), however an extension to
Quadrature Phase Shift Keying (QPSK) is straightforward.
For the purpose of channel estimation, the sequenceck

contains periodically inserted pilot symbols of valuec̃. The
resulting composite data stream is made up of frames of size
M , with pilot symbols located at indexesk = iM . Following
pilot insertion, the transmitter performs pulse shaping, which
is split evenly between the transmitter and the receiver. Thus,
p(t) in (1) is a Square Root Raised Cosine pulse of unit
energy. As noted in Section I, Gardner’s ZCD TED exhibits
an error floor for signals with small excess bandwidth. While
pre-filtering has shown to effectively reduce this effect [5],
for simplicity of the system we consider pulse shaping using
100% excess bandwidth and omit the pre-filtering stage.

B. Channel Model

We assume that the system operates in a frequency-flat
fading environment. The signal at the receiver on branchi

is given by

ri(t) = gi(t)s(t− τ) + ni(t) i = 1, . . . , Nr (2)

where ni(t) denotes complex AWGN noise with single-
sided power spectral densityN0, gi(t) represents the fading
process andτ is the timing delay of the signal. The fading
processgi(t) is assumed to be Rayleigh distributed (inde-
pendent and identically distributed (iid) on each branch),
with a U-shaped power spectrum characteristic of isotropic
scattering [13]. The autocorrelation function ofgi(t) (for all
i) is thus given by [13]

Rg(ξ) = σ2
gJ0(2πfDξ) (3)

whereσ2
g is the variance of the process, andJ0(x) denotes

the Bessel function of the first kind of order zero. The
quantityfD in (3) denotes the maximum Doppler frequency.

The timing drift is modeled by periodically delaying the
data sequence by a fraction of the symbol duration, which
was simulated by inserting a sample into the data stream
every NτT seconds. We assume that the relative timing
drift between the branches of the receiver is negligible. The
simulations were done using an oversampling factor of8,
and consequently a delay ofT/8 was introduced everyNτT
seconds on each branch. Thus, the time over which the
timing drifts by T seconds is8NτT , resulting in a timing
drift bandwidth (normalized to the symbol intervalT ) of
BτT = 1/8Nτ . Note that in the remainder of this paper all
bandwidths are normalized to the symbol intervalT .

C. Receiver Architecture

The block diagram of the receiver is shown in Figure 1.
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Fig. 1
Receiver Diagram.

The received signal at each branch is first passed through
an anti-aliasing filter and then sampled by a locally generated
clock at twice the symbol rate. The timing recovery is
carried out asynchronously, and is described in more detail



in Section II-C.1. Matched filtering is performed as part of
the data interpolation.

The recovered data strobes, denoted byyi(k), are then
used for channel estimation (Section II-C.2), which is carried
out independently on each receiver branch. After channel es-
timation, the Maximum Ratio Combiner computes a decision
metric β used by the decision device.

1) Timing Recovery: The receiver recovers the data
strobes asynchronously, that is the sampling interval at
the receiver is generated using a local oscillator which is
not locked to the incoming data sequence. The received
signal is sampled at a rate ofTs = T/2, resulting in a
sequenceri(k′Ts), where we usek′ to denote the index
of the upsampled data. The upsampled data is fed into a
parallel bank ofL = 4 polyphase matched filters, with the
appropriate output selected depending on the value of the
timing error. The output of the matched filter, denoted by
yi(k′Ts), is then used to estimate the error in the timing
epoch. To alleviate the effects of severe channel fluctuations
on the timing recovery, we use Selection Combining to select
the branch with the strongest signal component,ySC(k′Ts),
and use it as the input to the timing loop. Gardner’s TED [4]
is used to generate a timing error signalεk for each symbol
interval. The value of the error signal is computed by [4]

εk = {y((k′ − 2)Ts)− y(k′Ts)} y((k′ − 1)Ts). (4)

To suppress the effects of noise, the error signal is low-pass
filtered using a first order IIR filter. The3 dB bandwidth
of the filter is set according to the bandwidth of the timing
variation being tracked.

The functions of matched filtering and data interpolation
are combined by using a set of polyphase matched filters.
That is, if as a result of the timing error, we desire to obtain
a matched filter output delayed by some value ofτ̂ , we filter
the sequencer(k′Ts) by a displaced replica of the matched
filter

yi(k′Ts − τ̂) = ri(k′Ts) ∗ hMF (k′Ts − τ̂). (5)

where∗ denotes convolution. Consider a parallel bank ofL
polyphase filters, each operating at a sampling rate of1/Ts,
with the impulse response of thelth filter given by

hMF,l(nTs) = hMF

(
nTs +

l

L
Ts

)
l = 0, . . . , L− 1.

(6)
The control unit in the timing recovery loop selects an
appropriate output of the matched filter bank depending
on the value of the error signalεk. The resolution of
the interpolator is equal toMS parts per symbol, where
S = T/Ts is the oversampling at the receiver. That is the
resolution is limited by the number of units in the filter bank
and the oversampling of the data. Since the accuracy of the
interpolation is finite, there exists a threshold for the TED
outputεk, denoted byεth, below which no correction is done
by the interpolator. If the magnitude ofεk exceedsεth the

controller shifts the filter index pointer depending on the sign
of timing error. This in turn shifts the spacing of the samples
to counteract the timing error, which continues until the
timing error is reduced below the threshold. If an overflow or
underflow of the index pointer occurs, that is filtershMF,0 or
hMF,L−1 are reached, the control unit continues by wrapping
around the bank of filters. In such cases, it is necessary to
discard or repeat a single input sample. This operation is
referred to in [8] asskippingandstuffingof samples.

In practice, a bank ofL matched filters sampled atT/S
can be implemented by a single matched filter sampled atLS
samples per symbol. The incoming data sequencer(kT/S)
is simply upsampled by insertingM − 1 zeroes and filtered
by the upsampled matched filter. The output corresponds to
M interleaved outputs of each filter within a bank, with the
control unit selecting the data strobe at an appropriate time
instant.

While using Selection Combining to choose the input to
the timing loop significantly increases the strength of the
timing recovery signal, a further provision must be made
to ensure that the signal-to-noise ratio (SNR) is sufficiently
large for accurate calculation of the timing error. Since the
timing bandwidthBτT is usually significantly smaller than
the normalized Doppler frequencyfDT , it is possible to
temporarily stop the tracking when the signal is deemed to
be unreliable. We denote the envelope level of the signal at
the output of the Selection Combiner byγ, and the minimum
level for which the timing error data is considered reliable by
γmin. Thus, whenever the output of the Selection Combiner
drops belowγmin the receiver locks the timing epoch until
the envelope level again exceedsγmin.

Choosing the value forγmin presents a trade-off between
the quality of the signal used by the timing loop and the
length of time for which the loop holds the timing epoch
fixed. A small value ofγmin results in low instantaneous
SNR at the input to the timing loop, seriously degrading its
performance. On the other hand, selecting a largeγmin will
cause the timing epoch to be fixed for prolonged periods
of time. If during this time the timing drifts significantly,
the loop may not be able to re-acquire lock after the signal
emerges from the deep fade. In other words, we require the
correlation time for the timing drift to be smaller than the
fade duration.

Since the pdf of the fade duration in Rayleigh fading has
not been solved for, we use the average fade duration (AFD)
results presented in [14] as a guideline for selectingγmin.
The authors of [14] derive analytical expressions for the AFD
for the output for Selection Diversity. For Rayleigh iid fading
channels, the average fade durationTAFD at an envelope
level γ for Selection Combining of orderNr is given by
[14]

TAFD =
σg(exp( γ2

2σ2
g
)− 1)

√
πNrγfD

. (7)

Figure 2 shows the average fade duration forNr = 2 and



Nr = 4 antennas. Using the results from [14] as a guide,
and by performing a series of system simulations, we find
that for normalized fading bandwidth offDT = 0.01 and
Nr = 2 receivers, the timing loop is able to retain timing
lock when the average fade duration forγmin is on the order
of 0.01NτT .

Selection Diversity Average Fade Duration

Fade Level γ [dB]

-10 -5 0 5 10

A
vg

 F
ad

e 
D

ur
at

io
n 

[T
]

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

Nr=2 [fDT=0.01] 
Nr=2 [fDT=0.03] 
Nr=2 [fDT=0.05] 
Nr=4 [fDT=0.01] 
Nr=4 [fDT=0.03] 
Nr=4 [fDT=0.05] 

Fig. 2
Average Fade Duration for Selection Combiner.

2) Channel Estimation:Following timing recovery, the
channel state information on each branch is recovered using
the pilot symbols inserted into the data stream. The received
data stream is decimated and the CSI for data slots within
a frame is estimated by interpolating the recovered pilot
symbols. Specifically, the channel estimates on branchi for
data slotk, ĝi

k, −bM/2c ≤ k ≤ b(M − 1)/2c, are obtained
by interpolating the nearestK pilot symbols, that is

ĝi
k =

bK/2c∑
j=−bK/2c

h∗k,jyjM i = 1, . . . , Nr (8)

where hk,j are the channel interpolation coefficient. The
superscript∗ in (13) is used to denote complex conjugation.
In the above,k and j are used to denote the data and pilot
symbol indices, respectively.

We consider two variations of the interpolation filters for
channel estimation. First, to test the performance limits of
the channel estimator, we consider the Wiener filter [11] for
the channel statistics under consideration. This results in a
minimum variance of the estimation errorei

k, given by

ei
k = gi

k − ĝi
k. (9)

The Wiener filter coefficients assuming a frequency non-
selective Rayleigh fading channel with the autocorrelation
function given by (3) has been derived in [11]. Defining a
column vector ofK pilot samplesyiM asy and a column

vector of interpolation coefficients for thekth symbol within
a frame ashk, (8) can be expressed as

ĝi
k = h†ky (10)

where the dagger symbol† indicates conjugate transpose.
The mean squared error (MSE) criterion is satisfied by the
normal equations

Rhk = wk (11)

whereR is theK by K autocorrelation matrix

R =
1
2
E[yy†] (12)

and wk is a lengthK covariance vector corresponding to
the kth position within the frame, given by

wk =
1
2
E[g∗i

k y]. (13)

The components of the correlation matrixR and the covari-
ance vectorswk can be shown [11] to be given by

Rik = Rg((i− k)MT )|c̃|2 + N0δik (14)

and
wi,k = Rg((iM − k)T )c̃. (15)

In (14), δik denotes the Kronecker delta function.
While the interpolator with coefficients given by (11),(14)

and (15) result in minimum MSE performance, they are
impractical for most applications. In their computation, they
assume the knowledge of the channel autocorrelation, the
Doppler frequency as well as the operating SNR of the
system. In addition, the coefficients are optimized for each
position within the data frame, resulting inM − 1 different
sets of filter responses. In light of the above, we also consider
a channel estimator with a Raised Cosine impulse response.

III. S IMULATION RESULTS

In this section we present simulation results for the system
described in Section II. We consider serial transmission
of data and examine the BER performance as well as the
stability of the receiver for varying timing bandwidthBτT
and normalized Doppler frequencyfDT .

A. BER Performance

The data was subdivided into frames of sizeM = 7, that
is a single pilot symbol followed by6 data symbols. This
pilot spacing is suitable for channel estimation for Doppler
frequency up tofDT = 0.05 [11].

The channel coefficients were generated using the method
for uncorrelated Rayleigh fading channel responses pre-
sented by [15]. The maximum normalized Doppler frequency
was set tofDT = 0.01.

We examine the performance using the optimum Wiener
interpolator, given by (11), (14) and (15), as well as a more
practical Raised Cosine Filter with a rolloff factor of0.25.
In the case of the Wiener filter, the interpolation coefficients



were optimized for each position within the frame, the
operating SNR as well as the Doppler frequency. Channel
estimation was done usingK = 7 pilot symbols. As noted
in [11], the number of interpolants can be further decreased
to K = 5 with a small degradation in performance.

On each branch, a timing delay ofT/8 was introduced ev-
ery Nτ = 5000 symbol intervals, resulting in the normalized
timing bandwidth ofBτT = 2.5×10−5. The timing recovery
circuit consisted of a bank ofL = 4 polyphase matched
filters with a Square Root Raised Cosine impulse response.
Gardner’s Timing Error Detector was used, followed by a
first order IIR filter with a3 dB bandwidth (normalized to
the symbol rate) ofBlT = 5.74 × 10−2. The threshold for
the error signal in the timing loop that was found to be close
to optimum wasεth = 0.7, and was used throughout all of
the simulations.

The timing estimate was kept fixed below signal value of
γmin = 2 dB for SNR below12 dB, and was relaxed to
γmin = 1 dB for high SNR. These values were found to be
optimal for the timing bandwidth on the order ofBτT =
2.5× 10−5 to BτT = 1× 10−4.

The BER performance was tested forNr = 2 and
Nr = 4 receive antennas. The simulation results, along with
reference curves representing perfect timing and channel
estimation, are shown in Figure 3.
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Fig. 3
Bit Error Rate Performance.

For diversity of order2, the receiver performs within1 dB
of the reference curve when channel estimation is performed
using the Wiener interpolation filter. A further drop of2 dB
is observed when using the RC filter, which as described
previously, does not use the knowledge of the statistics of
the channel. In the case ofNr = 4 receive antennas, the
performance loss with an optimum channel interpolator is
approximately1.5 dB, with an additional2 dB drop for the
RC filter.

B. Effects of Timing Bandwidth

We now examine the stability of the system for varying
timing drift and Doppler frequency. We compute the outage
probability by considering an ensemble of500 simulation
results. The results are shown in Figure 4, where the outage
probability is plotted as a function of the timing bandwidth
BτT . The system operates at anSNR = 9 dB and Doppler
frequency offDT = 0.01 to fDT = 0.05.
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Outage Probability vs Timing Bandwidth.

From the results we see that the receiver is able to
maintain timing lock for normalized timing bandwidth ap-
proximately up toBτT = 1.2 × 10−4, at which point
the outage probability begins to rise steeply. For the range
of fading bandwidth considered, the system remains more
stable as the maximum Doppler frequency decreases, with
stable results up toBτT = 2× 10−4 for fDT = 0.01. Note
that while not shown here, the stability increases significantly
with higher average SNR.

IV. CONCLUSION

We have presented a method for joint timing and channel
estimation for diversity receivers operating in frequency-flat
Rayleigh fading environment. Asynchronous timing estima-
tion was performed using a polyphase matcher filter bank
and Gardner’s ZCD timing error detector. Selection diversity
was used to increase the quality of the input signal to the
timing loop. PSAM based channel estimation was performed
on the recovered data strobes.

For timing bandwidth ofBτT = 2.5×10−5 and a Doppler
frequency offDT = 0.01, we have shown the system’s BER
performance to be within 1 dB of the ideal synchronization
bound for channel estimation using Wiener interpolation
filter, with a further performance drop of 1.5 dB when using
an RC filter.



We examined the outage probability for increasing timing
bandwidth and Doppler frequency. We have shown that at
SNR = 9 dB the receiver is able to track the timing drift
up toBτT = 2× 10−4 for Doppler frequency up tofDT =
0.01.
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